Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration
نویسندگان
چکیده
Caloric restriction (CR), fasting, and exercise have long been recognized for their neuroprotective and lifespan-extending properties; however, the underlying mechanisms of these phenomena remain elusive. Such extraordinary benefits might be linked to the activation of sirtuins. In mammals, the sirtuin family has seven members (SIRT1-7), which diverge in tissue distribution, subcellular localization, enzymatic activity, and targets. SIRT1, SIRT2, and SIRT3 have deacetylase activity. Their dependence on NAD(+) directly links their activity to the metabolic status of the cell. High NAD(+) levels convey neuroprotective effects, possibly via activation of sirtuin family members. Mitochondrial sirtuin 3 (SIRT3) has received much attention for its role in metabolism and aging. Specific small nucleotide polymorphisms in Sirt3 are linked to increased human lifespan. SIRT3 mediates the adaptation of increased energy demand during CR, fasting, and exercise to increased production of energy equivalents. SIRT3 deacetylates and activates mitochondrial enzymes involved in fatty acid β-oxidation, amino acid metabolism, the electron transport chain, and antioxidant defenses. As a result, the mitochondrial energy metabolism increases. In addition, SIRT3 prevents apoptosis by lowering reactive oxygen species and inhibiting components of the mitochondrial permeability transition pore. Mitochondrial deficits associated with aging and neurodegeneration might therefore be slowed or even prevented by SIRT3 activation. In addition, upregulating SIRT3 activity by dietary supplementation of sirtuin activating compounds might promote the beneficial effects of this enzyme. The goal of this review is to summarize emerging data supporting a neuroprotective action of SIRT3 against Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
منابع مشابه
SIRT3 regulation of keratinocyte differentiation
Background: SIRT3 plays a major role in protecting against mitochondrial oxidative stress. Results: Oxidative stress increases during keratinocyte differentiation, and SIRT3 can decrease differentiation by attenuating oxidative stress. Conclusion: SIRT3-induced down regulation of mitochondrial oxidative stress attenuates keratinocyte differentiation. Significance: Understanding the regulation o...
متن کاملSIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging.
SIRT3 is a member of the sirtuin family of protein deacetylases that is preferentially localized to mitochondria. Prominent among the proteins targeted by SIRT3 are enzymes involved in energy metabolism processes, including the respiratory chain, tricarboxylic acid cycle, fatty acid β-oxidation and ketogenesis. Through these actions, SIRT3 controls the flow of mitochondrial oxidative pathways a...
متن کاملSIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's disease
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Despite decades of study, effective treatments for AD are lacking. Mitochondrial dysfunction has been closely linked to the pathogenesis of AD, but the relationship between mitochondrial pathology and neuronal damage is poorly understood. Sirtuins (SIRT, silent mating type information regulation 2 homolog in yeast) are NA...
متن کاملMelatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice
Increasing evidence shows that melatonin protected against age-related mitochondrial oxidative damage. However, the protective effects of melatonin against ovarian aging has not been explored. Young Kunming females (aged 2-3 months) were fed with melatonin added to drinking water for 6 or 12 months (mo). We found that long-term (12 mo) melatonin treatment significantly reduced ovarian aging, as...
متن کاملSirt3 targets mPTP and prevents aging in the heart
incidence of heart failure dramatically increases with aging. An important feature of cardiac aging is an increase in susceptibility to stress, such as ischemia and hemodynamic overload [1]. The heart is an organ in which mitochondria are abundant and mitochondrial dysfunction caused by oxidative stress is believed to be an important cause of aging and failure. Mitochondrial permeability transi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2013